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THE MAKING OF MEANING: A MODEL FOR INTERPRETING
MATHEMATICS EDUCATION RESEARCH

Vicky L. Kouba, Univérsity at Albany
INTRODUCTTION

The body of research on the learning and teaching of mathematics has
grown exponentially in the past twenty years. A majority of the theories
and philcsophies that have been developed to guide and sustain that
research and to provide logical epistemologies for the analysis and
synthesis of the results that research have been specific to well-
defined domaing within mathematics. In a relatively new area, as mcdern
mathematics education research is, the reliance on domain specific
theories, philosophies and models has been an efficaciocus and intellectual
necessity. Now, however, we are at a point where the body of knowledge
related to those damain specific areas has reached a critical mass that
lends itself to an examination (and in scwme cases, a re—examination) of
more global theories, philoscphies and models that had to be tabled while
the domain specific ones were developed and refined.

The model presented in this paper is one attempt at examining a
unifying theoretical representation of the intellectual processing that
occurs between the identification of a task within a classroom setting and
the comencement of actions planned as a resolution of the task by the
teacher and students. The model depicts the interactions among attending,
encoding, decoding and negotiating, which are viewed as the primary
processes used to "give meaning" to an identified task in a mathematics
classrocm.

The model is designed from an information processing interpretation of
attending, encoding and decoding. However, the information processing
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approach taken is a "weak" one, using Cobb’s (1990) definition of "weak,"
in that the claim made about the value of the camputer metaphor for
understanding mathematical cognition is a moderate or weak one. The
philosophy underlying the development of the mxiel is more “social" in
nature, reflecting, as Cobb (1990) recammends, that students are actively
engaged with teachers in a classroam cammunity that includes negotiation.
Both the teacher and the student are assumed to be engaged in constructing
cognitive knowledge and affective perceptions through the use of verbal,
figural, kinesthetic and other representations. There are several
important assumptions made in reiationship to the model: 1) Instruction as
it occurs in the classroom is a social-cultural/anthropological process
involving "negotiated tasks" that are attributed "commnity meaning" that
is acquired through a process extermal to individual or idiosyncratic
constructions of meaning and are derived from shared teacher-student and
student-student discourse. 2) The teacher and the students come to that
discourse with internally constructed "situated tasks" that are the result
of dynamic interactions amc.g individual attending, individual frameworks
of knowledge, and individual systems of perceptions. 3) Aspects and
interactions of cognition and what has conmonly been identified as "affect"
both are crucial to the formation of situated tasks.
LINKING TEACHING AND LEARNING

A call for the unification of different areas of mathematics education
research has been made on many fronts. Ramberg amd Carpenter (1986) called
for a rethinking of the school mathematics program in light of implications
in two areas of research: inquiry on how students learn mathematics and

inquiry on teaching. After careful reviews of the current state of
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mathematics instruction, recent developments on student learming and recent
developments on teaching, Raomberg and Carpenter (1986) identify several
areas where researchers should concentrate their efforts in the next two
decades. One of those areas is the construction of dynamic models that
bridge the learming-teaching gap. Carpenter and Romberg make the case that
these models should reflect the roles of change, learning, and growth and
shauld depict the way meaning of specific mathematical tasks is constructed
in classroams.

The work on integrating research on the teaching and learning of
mathematics has been one focus of the National Center for Reseaxrch in
Mathematical Sciences Education (Fennema, Carpenter, & Lamon, 1988). In a
recent book fram that group, Fennema and Carpenter (1988) present a general
model for research and curriculum develcpment for integrating cognitive and
instructional science (see Figure 1). They describe the model as one that
provides a pramising new paradigm for the study of teaching and learning,
and that:

...assigns a central role to teachers’ and students’ thinking.
Classroam instruction is based on teachers’ decisions ard the
effects of instruction on students’ behaviors and learning are
mediated by students’ cognitions. ...teachers’ decisions are
presumed to be based on their knowledge and beliefs ag well as
their assessment of students’ knowledge through their observation
of students’ behaviors. (pp. 8-9)

Thus, any global model related to research in mathematics education
would profit from building on the initial work done in linking teaching and
learning. However, other links must also be concidered, particularly those
that extend the definitions of cognition and that integrate information
processing theory with affective and cultural theories.

N
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LINKING COGNITION, AFFECT AND CULIURE

While acknowledging the central role that information processing
theories have played in ephancing the research on mathematics education,
Greer and Verschaffel (1990) sumarize the major criticisms directed at
information processing theories: 1) emphasis on cognition that de-
emphasizes affect, context, culture and history; 2) emphasis on symbol
manipulation that de—emphasizes meaning; and 3) emphasis on precision of
description that devalues knowledge or thinking that cannot be symbolically
or precisely represented.

Mcleod (1990) and Mcleod and Adams (1989) provide thorough reviews of
the need for integrating affect amd culture with cognition in mathematics
education research. Mcleod (1988, 1990) suggests that Mandler'’s
application of an information-processing linked theory of affect to
mathematics education (Mandler, 1984, 1989) provides an essential basis for
describing children’s emotional reactions to mathematical problem solving.
Mandler’s (1989) application centers on the effect of an interxuption or
discrepancy in the campletion of a schema-activated action sequence.

Mclead (1990) demonstrates how effective this theory is in describing
children’s actions on a "chickens and pigs" problem (If there are x
chickens and pigs altogether and y legs, how many of the animals are
pigs?}.

However, much of this description and much of Mandler’s theory focuses
on actions that occur after the children have "understood" or assigned
meaning to a situation. Systematic analysis of the interaction of affect,
culture and cognition during the formation of meaning prior to the



initiation of an action sequence may advance the application of Mandler’s
theory. ‘

Brown, Collins and Duguid (1989) make a strong case for viewing
learming and cognition as fundamentally situated in the activity and
context in which learning takes place. lave (1988), Saxe and Gearhart
(1988) , and others also make a strong case for the role that culture and
situation play in the application of mathematics as well as the learning of
mathematicg. Thus meanings for concepts, procedures arnd situations are
partly the result of the activity, context and culture in which the
leamning takes place. Greer and Verschaffel (1990) support the need to
make context and culture a major part of explaining learming; however, they
encourage keeping the information processing theory as well. They state,
"maximising the realizable value of comitive research in educational terms
depends crucially on multi-disciplinary partnership.” (p. 8) It seems,
then, that the development and verification of models linking aspects of
information processing theories with aspects of situated cognition theories
could benefit researchers by providing the means for a combined application
of successful but conpeting viewpoints for understanding how children learn
mathematics.

MAKING OF MEANING MOCEL

The proposed "making of meaning"” model for interpreting mathematics
education research, see Figure 2, was constructed using a template designed
to account for links between teaching and learning and for links among
cognition, affect and culture. The model reflects the idea that the chief
protagonists in linking the teaching and learning processes are the teacher
and the student. Thus the mudels contains the extemal and intexmal
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processing arenas for both the teacher and the students. The student
Processing arenas are represented as a single student, but should be
thought of as a stack, one arena for each member of the class. Thus,
attending to the TASK, constructing an intermmal individual SITUATED TASK,
and constructing a NEGOTIATED TASK occur not just between two protagonists,
but many. The gateway between the intermal and external arenas is the
attending process. The external arena is the milieux of the classroom and
the internal arena is working memory space and long-term memory.

The notion of the internal and external arenas and of an internal
SITUATED TASK is similar to that suggested by Sowder (1985) in his
discussion of what psychology has to offer with respect to encoding
mathematical tasks. His diagrams (see Figures 3 and 4) for solution
sequences for routine and non-routine problems depict extermal and internal
processing, as well as external and intermal versions of tasks.

TASK VARIABLES

The entry point into the model is the TASK node in the external arena.
Wwithin a classrocm a task is considered, whether presented by the teacher,
a text or a student. The TASK has associated with it a set of variables.
The mumber and forms of these variables are not fixed, but are open to
interpretation by the human players in the classroam through their physical
and cognitive processes of attending, decoding and encoding. Although
these variables are not fixed, they may be classified according to
conventional systems.

In his hierxarchy of task variables, Kulm (1984) links content, context
and syntax variables with the students’ surface and semantic analyses

performed during the understanding-the-problem stage of problem solving,
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which may be characterized as the stage in which students begin to make a
task or situation meaningful. Syntax variables are defined as "those
variables describing the arrangement of and relationships among words and
symbols in a problem" (Kulm, 1984, p. 16). For the purposes of this paper,
the words and symbols themselves, separate from any connotation or
denotation they may have when examined together, are considered to be
syntax variables. Other syntax variables include those listed by Barmett
(1984): length variables, grammatical complexity variables, mmeral and
symbol forms, question sentence position and form, and sequence variables.

Kulm’s definitions of content and context variables also hold for this
paper, with a few major additions. Content variables are those that refer
to the mathematical meanings of a situation such as content area (or
daomain), type of operation involved and the mathematical camplexity of the
problem. Context variables are the non-mathematical or incidental
meanings, described by Webb (1984) as those that refer to the form of the
problem (problem embodiment or representation, verbal context or setting,
and information format). However, as has been shown in studies of
students’ beliefs about the nature of mathematics (Kouba & McDonald, 1991),
the class of context variables must also include where and when the
concepts or processes depicted in a situation were learmed, practiced and
used. Thus, tasks have both surface and semantic cultural variables.
Also, another set of context variables that accampany the task variables
through the ATTENDING gateway are the envirommental variables that have
been shown to affect the attending process (such as noise level,
temperature of the roam, time of day, distractions outside the windows,
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comfort of the chair, arrangement of the chairs, mmber and identity of
people in the room, etc.)

ATTENDING AND THE INTERNAL ARENA

The TASK is "sensed" bv the teacher and the students. That is, the
teacher and the student .. i vtively attend to th= TASK variables. The
actual ATTENDING process works as described in most information processing
literature. Information is attended to, taken in, decoded, rearranged and
encoded, and stored in same form in the short~tena portion of working
memory. All of these processes are regulated by sone type of decision-
making and/ot valuing mechanism, which in turm is influenced by the
existing nature of the person’s long-term memory. The model depicts only
the underlying influencing interactions: the ATTENDING process is mediated
by existing FRAMEWORKS OF KNOWLEDGE and existing SYSTEMS OF PERCEPTION.

To reiterate, FRAMEWORKS OF KNOWLEDGE and SYSTEMS OF PERCEPTION
influence and indirectly control what the teacher and student attend to in
a TASK:; how the variables related to the TASK are represented and given
meaning during the decoding, rearrancing and encoding; and how the TASK
gets stored as a SITUATED TASK. Thus, the attending, encoding and decoding
processes as influenced by frameworks of knowledge and systems of
perception are the means by which TASKS become SITUATED TASKS.

Frameworks of Knowledge, Although both the teacher and the student
have the same general categories of frameworks of knowledge and systems of
perceptions, there are differences. Teachers have FRAMEWORKS OF KNOWLEDGE
that consist of formal and informal knowledge about:

a) the content of mathematics,

b) learming,

14
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C) teaching (pedagogy),

d) other content areas (which oftgn serve as contexts for

mathematical situa.ions).

e} beliefs about the nature of mathematics, ami

f} schooling as a social endeavor.

Students have formal knowledge about the content of mathematics and about
other content areas. They have informal knowledge about beliefs about the
nature of mathematics and about schooling as a social endeavor. 1If
students have knowledge about teaching amd learning, it, too, is at an
informal level.

Formal knowledge is that which has been constructed as part of
systematic study, usually in schocling siwatiors. Formmal knowledge
closely approximates a social consensus of the structure of that particular
area of study. For example, formal conceptual and procedural knowledge
about mathematics approximates the structure presented in texts and the
structures envisioned by mathematicians.

As an aside, one could engage in a philosophical discussion over which
of the task variables constitute the formal mathematical "truth" or
"reality" for a given situation or a given set of concepts and procedures.
However, the position taken in this paper is that there is no extemal
"truth" that constitutes the content of mathematics or the content of a
situation. Mathematics has negotiated conventions and negotiated base
postulates that then are processed by the rrevailing logic system (again, a
negotiated system). Thus, formal knowledge is knowledge that approximates
the negotiated consensus. For example, the areas of additive,
maltiplicative and algebra structures are not "external truth," but are

15
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negotiated systems drawn from the internally situated knowledge of those
who engage in the negotiation process. For the most part, "additive
structures" have a stable negotiated delineation. "™ultiplicative
structures,”, on the other hand, are still being negotiated. Several
groups of researchers have differing viewpoints about the nature of
multiplicative structures. Negotiation is taking place in the mathematics
education literature as eacli group explains the intemal processing and
logic that supports their interpretation. As addressed in a later section
of this paper, this making of meaning model may prove useful in examining
and furthering that negotiating process by providing a means to juxtapose
and integrate the differing perspectives.

Informal knowledge has been acquired through individual experiences.
It may be systematic in nature, but it has not been acquired through an
organized program of study.

Knowledge about the content of mathematics has been examined by
Hiebert and Lefevre (1986), who have provided definitions and a careful
analysis of CONCEPTUAL and PROCEDURAL knowledge in mathematics. Briefly,
they define conceptual knowledge as a connected web of knowledge rich in
relationships, "a network in which the linking relationships are as
prominent as the discrete pleces of information" (Hisbert & Lefevre, 1986,
pp. 3-4). They identify two levels (a contimnm, really) of conceptual
knowledge: primary, which is tied to context and therefore not very
abstract; and reflective, which is less tied to specific contexts and more
abstract than the primary level. Procedural knowledge they define as
consisting of two parts:

One part is camposad of the formal language, or symbol
representation system, of mathematics. The other part consists

16
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of the algorithms, or rules, for cawpleting mathematical tasks.
(Hiebert & lLefevre, 1986, p. 6)

Although these definitions were designed for conceptual and procedural
knowledge in mathematics, I believe they are reflective encugh in nature teo
generalize to other areas of formal knowledge that teachers possess.
Conceptual and procedural knowledge about learning, teaching, and other
content areas can be identified. For example, researchers looking at the
interaction of learming amd teaching in the mathematics classroom
(Carpenter, T.P., Fennema, E., Peterson, P.L., Chiang, C. & loef, M., 1989;
Cobb, P., Yackel, E., & Wood, T., 1988) suggest that teachers should
possess the following knowledge about student learming: knowledge of _
content domain, knowledge of problem difficulty, knowledge of distinctions
among problems that result in different processes of solution, and
understanding of the stages students pass through in acquiring concepts and
processes in a domain. These areas of knowledge may be classified as
conceptual knowledge. Likewise, the following, which were also suggested
as good requisite knowledge for teachers, may be classified as primarily
procedural knowledge (although all of them also have canmponents of
conceptual knowledge): knowledge of ways to assess students’ knowledge in
the domain, knowledge of the processes used to solve different problems at
each stage of acquisition of concepts, understanding of the nature of the
knowledge that underlies these processes, knowledge of the classroom
discourse procedures that pramote the development of different solution
processes, and knowledge of the social procedures and interactions of
classroom teaching.

CONCEPIUAL and PROCEDURAL knowledge also may sexrve as adequate initial
categories for knowledge about other subject areas such as science, art,

ERIC 17
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and social studies, at least in terms of how those subjects are integrated
with mathematics. However, teachers and students must also possess
knowledge about those areas as contexts for the application of mathematics.
More will be said about this in a mament.

Itemy (e) ad (f), beliefs about the nature of mathematics and
schooling as a social endeavor, differ fram the other areas of teacher amd
student knowledge considered thus far. while the areas have conceptual and
procedural aspects, they are, in essence, the context in which all of the
other areas of knowledge are considered. FRurthermore, beliefs about the
roles of the teacher and the students and about the process of schooling
are also part of knowledge about schocling as a social endeavor. Thus,
teachers and students must possess CONTEXTUAL knowledge about beliefs,
schooling and other subject areas.

As with OONCEPIUAL knowledge, it is useful to distinguish between twn
levels of OONTEXTIUAL knowledge, a primary level and a reflective level.

The primary level of conceptual knowledge (that tied to contexts) may be
considered a sub-category of the primary level of CONTEXTUAL knowledge,
because the primary level of conceptual knowledge is limited to mathematics
topics as contexts. Hiebert and lefevre (1986) use the primary
relationship of linking two pieces of information abcut decimal mmbers as
an exanmple. The primary level of CONTEXTUAL knowledge includes those links
as well as links between a mathematical concept and an application of that
concept or a belief abaut that concept.

The reflective level of CONTEXTUAL knowledge is the abstract
recognition of patterns within contexts. It is the realization that
mathematics may be decontextualized or generalized. The ability to operate

18



17
at the reflective level of CONTEXTIUAL knowledge may be a prerequisite for
developing all reflective conceptual knowledge, most primary conceptual
knowledge and any meaningful procedural knowledge. To elaborate, Hiebert
and Lefevre (1986) seem to treat conceptual and procedural knowledge as
knowledge decontextualized from situations and culture. However, if Brown,
Collins and Duguid (1989) are correct, the majority of the content
knowledge held by some teachers and most students is embedded in the
learning contexts, the belief systems and the cultures of the person.

Thus, much of the conceptual and procedural knowledge is constructed and
stored as SITUATED KNOWLEDGE. STITUATED KNOWLEDGE may be defined, then, as
conceptual and procedural knowledge that has not been decontextualized, but
remains integrally a part of the situation, beliefs and culture in which it
was learned.

A person who has a well-developed reflective level of contextual
knowledge knows how, why and to what extent conceptual and procedural
knowledge are embedded in situated knowledge. He or she knows about the
role of context and culture in learning and knows what aspects of meaning
are lost or altered when knowledge is generalized to the abstract levels of
conceptual and procedural knowledge. This person knows, too, the kind and
extent of the transformations that may take place in meaning when the
abstract conceptual or procedural knowledge is reapplied in new situations,
that is, "recontextualized."

Perhaps it is reflective contextual knowledge that Kaput (1987a) is
calling for in his recent remarks about the need for students to possess
kncowledge about representations. Reflective contextual knowledge about
representations may be the key in addressing the failure of students to

19
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cross between symbol and referent, a failure that Kaput (1987a) points out
leads to failure to estimate ortohave_asenseofthemgnitx.ﬂe of a
calculation. Kaput laments that mathematics educators and researchers have
given little attention to teaching how variocus mathematical and
nonmathematical representation systems work and how they relate to one
another. Perhaps mathematics educators and researchers have not attended
to those issues because there existed no theoretical framework for helping
to make sense of the situation. Kaput (1987a, 1987b) lays the groundwork
for such a theory, which when developed may fit into a larger theoxy for
"making meaning" as an aspect of reflective contextual knowledge.

As a summary for this section on FRAMEWORKS OF KNOWLEDGE, a more
detailed diagram for the portion of the model is offered (see Figure 5).
ATTENDING 1links directly to SITUATED KNOWLEDGE, which may be transformed
through the use of CONTEXTUAL KNOWLEDGE into CONCEPIUVAL and PROCEDURAL
KNOWLEDGE, and vice versa.

Systems of Perception. In humans, affect, in its broadest definition,
is a mediation process on cognition. Cognition does not occur without
affect (Mandlexr, 1989; Mcleod, 1989, 1990). Mcleod (1990) and Hart (1989),
in syntheses of the affect domain, identify beliefs, attitudes and emotions
as constructions (with "cold" to "hot" valuing or arcusal properties) that
influence the construction of knowledge and are part of that knowledge.
Hart (1989) provides useful definitions for beliefs, atticudes, emotions
and affect:

Note that instead of referring to aifective variables, affect, or

attitudes towards mathematics, I am now using the terms beliefs,

attitudes, and emotions, which, for me, lessens the confusion
associated with tiie meanimgs of affective variables, affect, ard

attitudes toward mathematics. Here, beulief isused . . . to
reflect certain types of judgments about sets of concepts. . . .

U
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I use attitude toward an abject to refer to emotional reactions

to the object, behavior towards the object, and beliefs about the

object. BEmotion is used here . . . to represent a hot gut-level

reaction. Affect is used only as a synonym of emotion; many

educators use the term in a more general sense. (p. 44)

McLeod (1990) makes same further distinctions among beliefs, attitudes and
emotions, "So, the terms beliefs, attitudes, and emotions are listed in
order of increasing affective involvement, decreasing cognitive
involvement, increasing intensity, and decreasing stability." (p. 17)

In the model presented in this paper, SYSTEMS OF PERCEPTION has been
deliberately chosen as the label for this area of concemn. Perceptions are
defined in most dictionaries as cognition, as products of the process of
perceiving, and as recognitions of moral or aesthetic qualities. Systems
of perception are constructed in conjunction with and in symbioctic exchange
with frameworks of knowledge. In theory and for the ease of discussion, we
can separate the two, but in actual human functioning they cannot be
separated.

The systems of beliefs that are included in SYSTEMS OF PERCEPTION
differ from the beliefs about the nature of mathematics mentioned in the
section on frameworks of knowledge in the extent of valuing, the type of
judgment made, and the cbject of the belief. BELIEF in SYSTEMS OF
FERCEFTION refers to the beliefs one holds about oneself and beliefs that
carry a "good" or "bad" connotation. A belief about the nature of
mathematics that has little valuing judgment attached is that mathematics
is only concexned with mumbers and operations. A belief that has a valuing
judgment and that therefore would be part of SYSTEMS OF PERCEPTION is that

mathematics is for "nerds" who are social outcasts.

Ok
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Mcleod and Adams’, (1989) book on affective issues and problem solving
is an excellent summary of research and ponstructicm of SYSTEMS OF
PERCEPTION. It may be helpful, however, to highlight some of the major
areas within SYSTEMS OF PERCEPTION that influence the formation of meaning.
Two areas of BELIEFS that have been studied in depth are confidence,
especially in relationship to gender differences (Meyer & Fennema, 1988;
Reyes, 1984), and causal attribution theory (Dweck, 1986; Heckhausen,
1987), which explores the reasons children have for expiaining their
success ard failure. Areas related to attitude that have received recent
attention are motivation and the setting of goals. And, an area within
emction that has traditionally receivexdd heavy attention in mathematics
education is anxiety. Specific examples of the interaction of these areas
will be considered in the next section.

Situated Tasks. Situated tasks are the products of the interactions
among attending, frameworks of knowledge and systems of perceptions as both
the teacher and the students assign meaning to the initial TASK. The
assigment of meaning to the initial task is akin to "making sense," which
von Glasersfeld (1987) reminds us, in a constructivist epistemology, relies
on the use of material (in this case, frameworks of knowledge amd systems
of perception) that a person already has.

To clarify, re-examine Sowder’s (1985) diagrams for sclution sequences
(Figures 3 and 4). In the intermal portion of his diagrems an encoded
version of the task is followed by questions that elicit schema searches.
Prior to this kind of search, however, a schema search to assign meaning
must ocar as a means for encoding a version of the task. Thus, during and
after the intake of task variables, the intemmal processing proceeds as
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though the following kinds of questions were asked: Do I know anything
about these variables? Do I recognize t:hnﬁe variables? What do these
things mean? What do I know, believe or feel that can help me make sense
of this and put it all together? Schema that can provide answers to these
questions are sought.

Because this model of making meaning is built on constructivist
assumptions (von Glasersfeld, 1987), this making sense involves finding a
way of fitting available schema into a pattem that is circumscribed by the
specific constraints of the task variables, the envirormental variables,
and the rest of the frameworks of knowledge and systems of perception
residing in long-term memory. A key question at this point is how the
seeking is done. What is the means of cammmnication? In the model the
routes of access among attending, frameworks of knowledge and systems of
perceptions are verbal, figural, kinesthetic and cther means of
representation. An important point to remember in understanding the nature
of the process of situating a task is that although the teacher and the
students theoretically have access to the same TASK variables, the
representations chosen to intermally represent those variables need not be
an exact match to any external definitions or comnotations. To be adequate
representations, they need only be campatible and not clash with the sense
of the TASK or with the other classroom protagonists’ expectaticns.
(Inadequate representations, misrepresentations, or misconceptions are not
addressed in this paper, It could be addressed by the model, and may need
to be addressed in future applications amd mxiifications of the model.)

Same exanples may help to clarify how the teacher and students use
the interactions among attending, frameworks of knowledge, and systems of
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perception to form situated tasks. The first exanple is drawn from
individual intexrviews with fimt&m@&iﬁgmdersuhowmaskedto
solve multiplicative word problems (Kouba, 1990). For a problem involving
how 6 horses could fairly share 24 apples, three children were adamant that
each horse shauld get just ohe apple. These children recognized the
problem as one involving grouping, but accepted that there would be "a lot"
of apples left over. They alsc were able to solve correctly a similarly
structured problem about people sharing tomatoes. All the evidence showed
that they had attended to a division structure and had some schema for
making sense of division problems that involved sharing. However, further
probes during the interviews revealed that they had attended to the context
of horses, which had activated a schema related to their experience with
horses. The children beljeved that it would be unhealthy for horses to eat
more than one apple, thus each horse should get just one apple. These
children had situated the task in their experience (all were from a rural
hane setting) and the answer they gave was correct for the SITUATED TASK
they were responding to. The children’s meaning for the task did not
conflict with the task. Nor did it appear to conflict with the
expectations of the other protagonist in the situation, for the interviewer
accepted all answers without indicating that the children should think of a
problem only in temms of the numbers and mathematical operations. The
children probably were not cued by the setting into applying "mathematics
classroom" actions oxr schema because the interview was conducted in a
separate classroam.

The second example is from a similar study of young children (Kouba,
1989), in which a third grader was asked to respand to a task similar to
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the apples-and-horses task (finding how many elements in group when given
the total and the mumber of groups). The child responded, "Oh, that'’s
making groups and that’s division." She evidently used existing knowledge
frameworks constiucted fram prior experience with formal instruction to
give meaning to the situation. However, she also used same systems of
perception in the form of beliefs when she went on to say, '"We haven’t
learned division yet, so I can’t do this." She evidently held the belief
that she cauld do only what had been formally taught. She would not
attempt the problem, even though she had physical materials available for a
trial-and-error approach and even though she had solved correctly other
division problems that involved finding how many groups when given the
total and the mumber of alements in a group. She did not refer to these
latter problems as "division," and thus, appeared to have situated them
differently.

Many other examples are present in the research literature, especially
in children’s problem solving and in exarination of students’ and teachers’
beliefs ard attitudes (Kouba & McDonald, in press; Nesher, 1988; Ohlsson,
1988; Schoenfeld, 1988; Thampson, 1988).

NEGOTIATED TASK AND THE EXTERNAL ARENA

The external arena is the classroom, for this model. Yackel, Cobb,
Wood, Wheatley and Merkel (1990) in their chapter on the importance of
social interaction, describe classrooms in which student-teacher and
student-student interactions promote the development of personally
meaningful solutions to tasks. For this to take place, however, scame
negotiation or discourse must occcur so that the teachers and students have
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a camunity understanding about the nature of the tasks and the nature of
the classroom as a place for interaction.

One of the teacher’s roles in the negotiation is to work towards a
generalized NEGOTIATED TASK that allows for the possibility that a range of
individually situated tasks will "f£it" the negotiated task.

Classroom negotiation, which should result in a NEGOTIATED TASK, is
also the time and place for both the students and teachers to check on the
viability of their situated tasks. In this sense, the teacher and the
students are conmunicators in a camon context and function as von
Glasersfeld (1987) describes. That is to say, for satisfactory
cammunication to occur, the cammnicators’ individual STTUATED TASKS need
be compatible enough that they do not clash with the other communicators’
expectations. If clashes are apmarent, then negotiation should occur. It
should be noted that negotiation means that the teacher is as willing as
the students to reexamine his or her meaning or situating of a task. The
assumption is made that SITUATED TASKS are not immutable. Refocusing or
re-attending to a different set of task variables would result in an
altered SITUATED TASK that would still be constructed by the individual.

Also, because the teacher is the only adult protagonist involved, it
is the teacher’s responsibility to know encugh about the intemal process
of constructing situated tasks, enough ab~'t the underlying structures of
the mathematics involved, and enocugh about cammunication and the social
context of the classrooam to help all protagonists (self included) re-
situate a task intermally and check that there is a consistent organization
for that situating, which, according to von Glasersfeld (1987) would lead

to "understanding. "
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Not encugh research nas been done to provide & full r=nge of
descriptions for negotiation or disccux:se in the mathematics classroom.
However, initial studies on the use of discourse, especially in small group
work are providing same direction (Ccbb, P., Yackel, E., & Wood, T., 1988;
Lampert, 1986; Lemoyne & Tremblay, 1986; Carpenter, T.P., Fernema, E.,
Peterson, P.L., Chiang, C. & loef, M., 1989; Resnick & Ford, 1981; Yackel,
Cabb, Wood, Wheatley and Merkel, 1990). As summarized in Kouba and
Franklin (in press) same common features for the negotiating discourse
include discourse that is: centered on child-generated actions and ideas
with the children as main participants; facilitated by the teacher so that
all ideas, even incorrect ones are critically examined by all participants:
linked to previous experiences with physical and pictorial models as
consensus is negotiated so that no one type of representation mode
dominates; and conprehensive in the formal and inforral language used so
that the consensus is not tied to any one verbal representation. Much
still needs to be done in this area.

RESEARCH ON SIMPFIE MULTIPLICATIVE STRUCIURES

The model presented in this paper may be used as a means for analyzing
aspects of the major theoretical approaches in the research on children’s
processing of mltipg‘.ca_fcive situations.

Neshexr (1988)2;1::!'1;&3:;" major theoretical approaches in the analysis
of simple multiplicative structures. Two emphasize mathematical constructs
and are exemplified by the work of vergnaud (1983, 1988), Schwartz (1979,
1988). Vexrgnaud’s and Schwartz’s approaches are also classified as
"dimensional analyses" because they are concerned with the relationship
between the mmber and the nature of a quantity (a mumber and its label or
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unit). The third major approach is a textual analysis focused on the
propositional structure of word pmblems:. Nesher’s work (Nasher, 1988:
Peled & Nesher, 1988) exemplify this approach.

All three approaches depict children attending to number and word task
variables in a multiplicative situation (usually a word problem). In this
respect, all three approaches have a carponent that links CONCEPTUAL and
PROCEDURAL FRAMEWORKS OF KNOWLEDGE to the meaning that children assign
multiplicative situations. The nature of and the extent of the emphasis on
the conceptual and procedural knowledge differ, however.

Vergnaud’s (1983, 1988) analysis, diagramed as four quantities related
in both a scalar and functional direction between and across two measure
spaces, assumes that children have a CONTEXTUAL BELIEF about the nature of
mathematics that appears to value the abstract above the context. This
valuing of the abstract is demonstrated by the penchant for representing
relationships within and subcategories of multiplicative structures as
nurbers in pure symbol notation (scalar and function) freed from the
constraints of the units attached to the mumbers. In essence, the nature
of the quantities is controlled. The dimensional analysis is a means for
moving munbers as efficiently as possible to the most abstract, generalized
spaces of CONCEPIUAL AND PROCEDURAL KNOWILEDGE. This is done with little
attention to the issues about understanding that have been raised
previocusly in the discussion of the reflective level of OONTEXTUAL
KNCWLEDGE .

Schwartz’s (1979, 1988) analysis also i< centered in CONCEPIUAL and
PROCEDURAL FRAMEWCRKS OF KNOWLEDGE, but has more CONTEXIUAL BELIEFS
caponents that may be attributed to those valued in science, and thus is
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STTUATED in science. The nature of the quantities, rather than being
controlled, is used as the focus for categories. The labels or units for
quantities remain linked to the quartities and rate relationshins between
quantities are treated as entities that may be percejrad differently. For
exarple miles-per-hour, although of the same category as candies-per-bag,
may be perceived differently because it can be thought of as a single
entity, "speed." In this sense, Schwartz’s analysis is less abstract than
Vergnaud’s and addresses same of the representational understandings that
are a part of reflective CONTEXIUAL knowledge. Schwartz’s analysis may be
viewed as one means for describing the effect of situating mathematical
structures (whosennstabstractnamresmaybeaptlyportrayedby
Vergnaud’s analysis) within the social conventions of science.

Nesher’s (Nesher, 1988; Peled & Nesher, 1988) analysis moves farther
away from abstraction and describes a modification phase that is more
situated and contextual that Schwartz’s, but also accounts for the
influence of language in more detail than a dimensional-analysis-of-units
level. In Nesher’s analysis, the textual propositions, which are language
dependent situational relationships among the quantities and quantity/unit
pairs, must be transformed at the reflective level of contextual knowledge
into conceptual and procedural knowledge.

Thus it seems that the making-of-meaning model provides a means for
viewing theories about multiplicative structures as successive or possible
alterations along or within a complex level-of-abstraction scaffold. The
model may also help to incorporate other research on multiplicative
structures. In particular, the work of Fischbein, Deri, Nello, and Marino
(1985), on hypothesized primitive, intuitive models and the related work of
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Bell, Greer, Grimson and Mangan (1989) on a cawpeting claims theory for
choices in giving meaning to and solving_ multiplicative problems should be
examined.

As research helps to clarify the relationships among attending amd
systems of perception, the multiplicative theories should be re-examined
and exparded to conpensate for some of their current drawbacks. The
existing theories assume consistency of affect over time, consistency of
goal and motivation, and consistency of self-confidence. Without these
considerations, the theories will hold for generalized result but will not
be useful for locking at small classroom groups or individuals.

Likewise, this model for the making of meaning shauld be re-examined,
modified, and refined in light of continued dialogue ahout how pecple make
meaning. In particular, the negotiating processes and the interactions
along the social-cultural/ anthropological routes of access between tasks
and attending need to be expanded and clarified. This area could benefit
from further consideration of discourse theories, the social construction
of meaning and knowledge, and further research on teacher decision-making.
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